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Abstract
The effects of the supercell approximation in first-principles calculations for
isolated, charged point defects in semiconductors and insulators are studied.
The convergence of the Coulomb energy with respect to the supercell size
is investigated. Quantitative numerical results for the standard uniform
compensating charge and the newly proposed localized compensating charge
scheme are presented for a prototypical defect, the doubly positive silicon self-
interstitial.

1. Introduction

Many of the calculations of point defects in solids are performed using powerful computational
methods originally developed for the calculation of perfect crystal structures. These methods
rely on the use of the periodic boundary conditions (PBCs) and the plane-wave expansion of
the Kohn–Sham orbitals and the electron density. The defect properties are calculated using
periodically repeated supercells, which contain up to a few hundred atoms using first-principles
density-functional methods and present-day computational resources. Although the supercell
approximation describes accurately the crucial local rearrangements of bonding between atoms
and the underlying crystal structure, it also introduces artificial long-range interactions between
the periodic defect images. The most dramatic artefact of the approximation is the divergence
of the Coulomb energy for charged defects.

The Coulomb divergence of the charged defects in the supercell approximation is
traditionally circumvented with the use of a uniform, neutralizing ‘jellium’ background charge.
In the large-supercell limit the interaction of the defect with the spurious periodic images and
with the jellium background becomes negligible, in principle. However, there is no guarantee
that the convergence of the Coulomb energy as a function of the linear dimension of the
supercell, defined as the cube root of the supercell volume L = 3

√
V , is particularly fast. In

fact, classically one would expect an asymptotic L−1 dependence.
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Leslie and Gillan [1] used a macroscopic approximation to correct for the Coulomb
energy error in the case of jellium compensation. They considered an array of point charges
with a neutralizing background, immersed in a structureless dielectric, and found significant
contributions in their calculations for ionic crystals. Makov and Payne [2] developed the
idea further, and derived a total-energy correction formula for charge distributions in cubic
supercells (see equation (3) below).

A different route was recently taken by Schultz, which also utilizes the linearity of the
Poisson equation [3, 4]. An aperiodic model defect charge distribution nLM(r), matching
the electrostatic moments of the system up to a given order, is separated from the supercell
charge. The Coulomb energy of the remaining periodic charge is neutral and momentless,
and can be calculated normally using PBC. The Coulomb energy of the model defect charge
is calculated using ‘cluster boundary conditions’, with the surrounding polarizable defect-
free crystal replaced by perfect non-polarizable bulk crystal. Unfortunately, no analytical
correction formula similar to the Makov–Payne one (equation (3)) is available for this local-
moment countercharge (LMCC) method.

A direct approach for the embedding of the charged defect cell into a perfect non-
polarizable crystal was given by Nozaki and Itoh [5]. Unfortunately the application of their
formalism is limited by the missing treatment of screening and polarization effects. They
report test calculations of impurity energies independent of supercell sizes. The acquired size
independence does not stem from the derived formalism, but instead from the used numerical
method, which does not allow any ionic or electronic screening effects (rigid-ion model and
identical atomic positions for different supercells).

To summarize the current status, one can say that for systems isolated by large regions
of vacuum, i.e. charged ions or molecules, all the above corrections to the Coulomb energy
give excellent, consistent results. For these systems, there is no difficulty in defining the
localized, aperiodic defect charge, and the surrounding vacuum does not require any extra
considerations about polarizability or potential discontinuities. For metals the physical picture
is that the charged defects are completely screened already at short distances from the defect,
and the Coulomb defect–defect interaction between supercells is negligible. The usual jellium-
compensation scheme is consistent with metallic screening without additional corrections.

Most of the work in Coulomb corrections for supercell approximation use ionic solids as
test cases. The effects of the corrections for the jellium compensation are more dramatic in
absolute magnitude for ionic materials than for semiconductors due to the stronger screening
in semiconductors. In this work we show that the supercell approximation can introduce
significant errors in the calculated total energies for charged defects in semiconductors. The
errors in the calculated total energies transfer directly to the important formation and ionization
energy estimates.

The silicon self-interstitial in the doubly positive charge state is chosen as a prototypical
charged defect in covalently bonded semiconductor material. The stable tetrahedral position of
the interstitial in the region of low electronic bulk density results in a relatively weak interaction
with the host lattice [6]. The defect states are well localized and the symmetry conserving
lattice relaxation around the tetrahedral interstitial position is relatively small. Energetically
the occupied defect state is slightly below the bottom of the valence band.

2. Computational details

The calculations are performed using a standard plane-wave pseudopotential program within
the local-density approximation (LDA) for the exchange–correlation potential [7]. The
electron charge density is explicitly symmetrized using cubic point-group symmetries.
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The plane-wave basis-set cutoff is 17 Ryd, and with the separable first-principles norm-
conserving pseudopotentials we find the equilibrium lattice constant of 5.39 Å. Cubic supercells
allow us to simplify the discussion, as dipole interactions are cancelled.

The effects of the first Brillouin-zone (BZ) sampling and the elastic interactions are
thoroughly discussed by Puska et al [7] in the case of the silicon vacancy, and also give
a reference to the magnitude of these effects in the case of the interstitial. In the present
calculations for the interstitial, the ions are kept fixed on their ideal positions. The order of
magnitude of the ionic relaxation energy associated with the breathing mode of the ions around
the doubly positive interstitial remains relatively constant, 0.5 eV, for the studied supercell sizes.

The first BZ is sampled using the Monkhorst–Pack (MP) sampling scheme [8] and the
zero-nearest-neighbour interaction scheme by Makov, Shah and Payne (MSP) [9]. The MSP
scheme is found to perform consistently and accurately from supercell sizes of 64 atoms
onwards compared with the 4 × 4 × 4 MP sampling for 32-, 54- and 64-atom supercells, and
the 2 × 2 × 2 MP sampling for 128- and 216-atom supercells (figure 1). The ‘�-point only’
sampling was found to be totally unacceptable for the accuracy we require in the extrapolation
as a function of the supercell size. The errors in the defect energy compared with the MP
sampling are of the order of 1 eV for small supercells, and 0.5 and 0.1 eV for 128- and 216-
atom supercells, respectively. We also stress that the errors caused by inaccurate BZ sampling
do not cancel when taking the total-energy differences between defect and perfect-crystal
supercells [9].

In addition to the standard uniform jellium charge compensation, we have calculated the
Coulomb energies using the newly proposed LMCC scheme [4]. The model density nLM

consists of a single Gaussian charge distribution with a width parameter α = 0.44 bohr−2

centred at the interstitial site.

3. Formation energy

The formation energy E
q

f of the self-interstitial in charge state q as a function of the electron
chemical potential µe is calculated as

E
q

f (µe) = E
q

d − Eb − µSi + q(µe + Ev), (1)

where E
q

d is the total energy of the defect-containing supercell and Eb is the corresponding
defect-free bulk supercell energy. The silicon chemical potential is calculated from µSi =
Eb/Nat, where Nat is the number of atoms in a bulk supercell. The electron chemical potential
is referenced to to the valence-band maximum Ev in the perfect crystal.

In the following we study the simple difference of the supercell energies as a function of L

E
q

def(L) = E
q

d (L) − Eb(L), (2)

which contains the artificial, size-dependent defect–defect Coulomb-interaction energy. The
errors made in the determination of E

q

def(L) transfer directly to the formation energies and
depend on the charge state as ∝ q2. The errors in ionization levels, where the ionization
levels are defined as the values of the electron chemical potential at which the most stable
configuration changes charge state, depend on the charge as ∝q.

The calculated energy differences E2+
def(L) of the doubly positive silicon self-interstitial

are presented in figure 1. We have presented the energies versus 1/L, anticipating the classical
1/r asymptotic convergence. The dashed lines are drawn so that they pass through the points
corresponding to the two largest supercells. It is gratifying to notice that the lines nearly meet at
the infinite-supercell limit, the limiting values being −121.45 and −121.61 eV for the uniform
compensation and LMCC methods, respectively.
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Figure 1. The energy differences E2+
def for different supercell sizes calculated using jellium and

LMCC charge compensation schemes. A horizontal line is drawn at the average value of the jellium
and LMCC extrapolations at 121.5 eV.

The energy difference E2+
def converges asymptotically as L−1 with the both compensation

schemes. The slope of the line corresponding to the jellium compensation in figure 1 is smaller
than the slope of the line corresponding to the LMCC compensation. The slopes are determined
by the prefactors of the L−1 error components, and depend on the strength of the dielectric
screening of the medium. The prefactor for materials with strong screening is smaller (larger)
for jellium (LMCC) compensation, and vice versa for more ionic materials—the two extreme
cases being metallic media and vacuum.

Makov and Payne [2] have derived a (post-) correction formula for the electrostatic energy
of an isolated charge distribution within PBC and uniform compensation in cubic lattices [2],

E(L) = E0 − q2α

2εL
− 2πqQ

3εL3
+ O[L−5], (3)

which contains an L−3 term in addition to the L−1 term identical to that derived by Leslie
and Gillan [1]. The first correction term with the charge q of the defect and the appropriate
superlattice Madelung constant α describes the electrostatic energy of the point charge array in
a uniform background in the presence of screening medium described by the static dielectric
constant ε. The numerical value of the Madelung constant α depends on the definition of
the size parameter L and whether the factor 1/2 is included or not. The numerical values
corresponding to the definition of L as the cube root of the supercell volume and equation (3)
are 2.8373, 2.8883 and 2.885 for SC, BCC and FCC supercells, respectively.

The second correction term describes the interaction of the defect charge distribution with
the neutralizing jellium. The parameter Q is defined as the second radial moment of the
aperiodic defect charge density, ρap = ρd − ρb, which is defined as the difference between
the valence electron densities of the defect containing supercell and the corresponding perfect
crystal supercell. The definitions of the parameters ε and Q in the L−3-order term contain
some ambiguity (see the discussion below). The value Q = 14.89 bohr2 used in table 1 is taken
from the calculation of an isolated atom in vacuum, and the value ε = 12 roughly corresponds
to the experimental value of the static dielectric constant.
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Table 1. Makov–Payne correction applied to E2+
def energy differences calculated with jellium

compensation and MP k-sets. Columns �1 and �2 give the contributions from L1− and L3− order
terms. Energies are given in eV.

Nat E2+
def �1 �2 E2+

def + �1 E2+
def + �1 + �2

32 −122.51 0.81 0.03 −121.70 −121.67
54 −122.19 0.68 0.02 −121.51 −121.49
64 −122.17 0.63 0.02 −121.54 −121.52

128 −121.93 0.51 0.01 −121.42 −121.41
216 −121.85 0.42 0.00 −121.43 −121.42

The values for the energy differences corrected using the analytic expression equation (3)
in table 1 agree with the extrapolated limit of the numerical data in figure 1, and differ
significantly from the uncorrected values. We can provide the result with an absolute error
estimate E2+

def = 121.5±0.1 eV, the error bounds including the BZ sampling and defect–defect
Coulomb interaction error contributions. We notice however that there still remains a small
systematic error in the corrected results in table 1, which is related to the under-estimation of
the L−3-order correction term (see discussion).

4. Discussion

A quantitative example of the effects of the Makov–Payne correction on the formation energies
and ionization levels can be found in the recent calculation of the monovacancies in silicon–
germanium [10]. The calculated energies include ion-relaxation contributions. The effect
of the correction on the model system of a 64-atom zincblende supercell and a Si vacancy
is illustrated in figure 2. Without any correction for the spurious defect–defect and defect–
jellium interactions, the results imply that the stable configuration of the Si vacancy in SiGe
changes first from doubly positive to negative (2+/−) and then from negative to quadruply
negative (−/4−) as the electron chemical potential is increased. This would be interpreted
as a strong negative-effective-U phenomenon (Ueff < 0), that is, the energy gain from the
lattice–lattice relaxations exceeds the Coulomb repulsion energy U of electrons on (nearly)
degenerate orbitals. The calculated lattice relaxation patterns do not support this interpretation,
not to mention the unlikelihood of finding a 4− charge state within the gap region. The lattice
relaxations for charge states from 1 to 4 are relatively small and the NN symmetry does not
change. The Makov–Payne Coulomb correction restores the repulsion between the electrons on
degenerate orbitals, resulting in an almost constant Ueff for the higher-charge states, consistent
with the static relaxation pattern. It also removes the negative-effective-U effect from the
positive-charge states. We note that the negative-effective-U character of the (2+/0) transition
of the Ge vacancy is not destroyed by the correction.

Another illustrative example of the practical effects of the correction to the defect properties
is the comprehensive study of monovacancies and antisites in 4H–SiC by Torpo et al [11]. They
present numerous formation energy plots with and without the first-order correction.

All the above-mentioned schemes, the correction for the jellium compensation and the
mixed boundary condition methods, are derived with the assumption that the defect charge
is localized within the supercell. Strictly speaking, in the classical theory, this assumption is
not valid, as the polarization and thus the aperiodic screening charge distribution in principle
extend to the whole macroscopic crystal.

If we compare the two charge-compensation schemes on the qualitative, classical
electrostatic level, we can see that in many respects the ideal uniform compensating charge
scheme corresponds to metallic screening, and the localized compensating scheme to the limit
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Figure 2. Formation energy of the Si vacancy in SiGe as a function of the electron chemical
potential, with (above) and without (below) the Makov–Payne correction [10]. The bottom of the
conduction band (LDA) is shown as a vertical dotted line.

where screening is absent outside the supercell, i.e. non-polarizable media or vacuum. This is
illustrated in figure 3, which shows the integrated aperiodic charge Z(r) = ∫ r

0 dr 4πr2〈ρ(r)〉
used in the calculation of the Coulomb energy.

Figure 3 shows that at the border of the supercell the integrated charge (including the
jellium contribution) approaches the number of the valence electrons of the neutral interstitial
in the case of the jellium compensation. Counting the ionic charge of the interstitial, the defect
appears completely screened, whereas in the case of the LMCC method the charge inside
the supercell is the same as the nominal charge state 2+ of the defect, and at the border of
the supercell the defect appears completely unscreened. Classically, the amount of charge,
including the screening charge, should be a fraction of the nominal charge q2/ε inside the
supercell.

Looking at the integrated aperiodic valence electron distributions (without the jellium
contribution) in figure 4, we notice that the electron densities are nearly identical inside the first
NN shell. The valence electron distributions calculated using the LMCC charge compensation
extend correctly further away from the defect than in the jellium compensation scheme. The
positive tails (negative electron density) of the aperiodic densities are in the border regions of
the corresponding supercells.

The aperiodic charge ρap of the supercell does not fully correspond to the classical picture
of an isolated localized positive charge at the defect site. At close distances, the defect
is well screened and the charge distribution ρap is similar to the charge distribution of a
neutral pseudo-atom in vacuum. Since the screening electrons must come from somewhere,
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and the charge of the supercell is fixed, the screening charge comes from where it is
energetically most favourable—dilutely, from the borders of the supercell. The density ρap

has a substantial positive region near the borders of the supercell. This region gives a major
contribution to the integral defining the second radial moment Q = ∫

d3r r2ρap(r). Thus,
the above definition of Q depends on the size of the supercell and does not lead to a well
defined value.

The classical treatment of the Coulomb interaction in dielectric materials separates the
external charges and the induced, screening charges. Since the effects of the screening in
the Makov–Payne correction formula (equation (3)) are taken into account using a dielectric
constant, the aperiodic charge ρap should correspond to the external charge. Exactly the same
holds for the determination of the model charge nLM in the LMCC method. We have used the
valence electron distribution of an isolated silicon atom to estimate the second radial moment
Q in the Makov–Payne correction formula, and in the determination of the width parameter
of nLM in the LMCC method.

As mentioned, there is still a small systematic error in the corrected energies in table 1. We
attribute this error to the L−3-order term, which seems to be underestimated. The L−3-order
term describes the interaction between the aperiodic charge distribution and the jellium. This
interaction is not as long ranged as the defect–defect interaction. Instead, it is short ranged
and the screening is reduced from the long-range limit of ε. We propose that this is the reason
for the apparent under-estimation of the L−3-order correction.

The final estimate of the defect formation energies in semiconductors also contains a
number of factors besides the Coulomb energy discussed here. For example, heavy doping
can be argued to turn a semiconductor material metallic, influencing the screening [12].

5. Conclusions

The magnitude of the Coulomb correction for a given supercell size can and should be estimated
at least by calculating the first-order correction, corresponding to a point charge array and
uniform compensating background in structureless dielectric. The correction systematically
moves the formation energies up in energy, and pushes the positive ionization levels in the
gap towards the valence band maximum and the negative levels towards the conduction band
minimum (figure 2). The general effect is to reduce the (over-) binding of the charged defects.

In practice, both LMCC and jellium charge-neutralization schemes have to rely on the use
of a screening parameter or the direct extrapolation of the results for supercells of different
sizes. To obtain confidence in the absolute convergence with respect to supercell size, we
propose the use of a plot similar to figure 1.
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